Therefore, it is also sometimes named the Jarník's algorithm, Prim – Jarník algorithm, Prim – Dijkstra algorithm or the DJP algorithm. However, for graphs that are sufficiently dense, Prim's algorithm can be made to work in linear time, meeting or better the time boundary for other algorithms.

COMING SOON!

```
package DataStructures.Graphs;
/**
* A Java program for Prim's Minimum Spanning Tree (MST) algorithm.
* adjacency matrix representation of the graph
*/
class PrimMST {
// Number of vertices in the graph
private static final int V = 5;
// A utility function to find the vertex with minimum key
// value, from the set of vertices not yet included in MST
int minKey(int key[], Boolean mstSet[]) {
// Initialize min value
int min = Integer.MAX_VALUE, min_index = -1;
for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min) {
min = key[v];
min_index = v;
}
return min_index;
}
// A utility function to print the constructed MST stored in
// parent[]
void printMST(int parent[], int n, int graph[][]) {
System.out.println("Edge Weight");
for (int i = 1; i < V; i++)
System.out.println(parent[i] + " - " + i + " " +
graph[i][parent[i]]);
}
// Function to construct and print MST for a graph represented
// using adjacency matrix representation
void primMST(int graph[][]) {
// Array to store constructed MST
int parent[] = new int[V];
// Key values used to pick minimum weight edge in cut
int key[] = new int[V];
// To represent set of vertices not yet included in MST
Boolean mstSet[] = new Boolean[V];
// Initialize all keys as INFINITE
for (int i = 0; i < V; i++) {
key[i] = Integer.MAX_VALUE;
mstSet[i] = false;
}
// Always include first 1st vertex in MST.
key[0] = 0; // Make key 0 so that this vertex is
// picked as first vertex
parent[0] = -1; // First node is always root of MST
// The MST will have V vertices
for (int count = 0; count < V - 1; count++) {
// Pick thd minimum key vertex from the set of vertices
// not yet included in MST
int u = minKey(key, mstSet);
// Add the picked vertex to the MST Set
mstSet[u] = true;
// Update key value and parent index of the adjacent
// vertices of the picked vertex. Consider only those
// vertices which are not yet included in MST
for (int v = 0; v < V; v++)
// graph[u][v] is non zero only for adjacent vertices of m
// mstSet[v] is false for vertices not yet included in MST
// Update the key only if graph[u][v] is smaller than key[v]
if (graph[u][v] != 0 && mstSet[v] == false &&
graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}
// print the constructed MST
printMST(parent, V, graph);
}
public static void main(String[] args) {
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
PrimMST t = new PrimMST();
int graph[][] = new int[][]{{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0},
};
// Print the solution
t.primMST(graph);
}
}
```